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Abstract

We develop methods by which cosmic superstring interactions can be studied
in detail. These include the reconnection probability and emission of radiation
such as gravitons or small string loops. Loop corrections to these are discussed,
as well as relationships to (p, q)-strings. These tools should allow a phenomeno-
logical study of string models in anticipation of upcoming experiments sensitive
to cosmic string radiation.
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1 Introduction

The idea that cosmic strings might have formed in the early universe has been around

for some time, being a generic consequence of U(1) symmetry breaking. If observed,

these long filaments of energy stretched across the sky would be the highest energy

objects ever seen. Even more spectacular is the idea that these cosmic strings might

be cosmic superstrings. This idea was first proposed by Witten [1], but for several

technical reasons this was found to be unfeasible. Progress in superstring theory,

particularly non-perturbative aspects, allowed the subject to be revisited recently [2] [3]

with encouraging results. For more complete reviews of the subject see [4] [5].

Since it is now at least plausible that cosmic strings might be observed, it is im-

portant to know how one might differentiate conventional cosmic strings from cosmic

superstrings. The former are classical objects, being an effective description of a field

theory vortex solution. Superstrings, however cosmically extended they may be, are

inherently quantum objects. Ideally these quantum fluctuations would provide observ-

able differences in the cosmic string’s behavior, allowing us to determine which type of

string it is. The issue is doubly important since experimental evidence of string theory

from colliders is not expected to be forthcoming in the near future, and this may be

the best opportunity to prove string theory is the correct theory of nature.

Wound states appear in the perturbative spectrum of the bosonic, type II and

heterotic string theories but there has been relatively little investigation into their

interactions. The first was by Polchinski and Dai [6] [7] who used the optical theorem

to compute the reconnection probability for bosonic wound strings. Such scattering

was also studied by Khuri [8] finding that interaction is suppressed in the large-winding

limit, whereas Mende used path integral saddle points [9] to show that for some special

configurations it may still occur. Reconnection probabilities of wound superstrings were

studied in [10], and further investigation into the effect of backgrounds was performed

in [11].

In this article we develop new methods for calculating cosmic superstring interac-

tions. We first review the reconnection process, and show explicitly that the probability

of reconnection can be obtained by summing over all final kinked states. This method

naturally generalizes to the possibility of emitting radiation during reconnection, and

allows us to calculate the probability for this as well. We discuss the spacetime trajec-
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Figure 1: When cosmic strings approach each other, there is some probability for them
to reconnect.

tory of the strings during reconnection, as well as loop corrections to the interactions. A

novel boundary functional representation of the kinked string is also given. Finally we

conclude with an overview of upcoming experiments which might be sensitive to these

signatures. To emphasize the principles introduced here we study only the bosonic

string, but the ideas should easily generalize to the superstring.

2 The Cosmic Superstring Vertex Operators and

States

We will model cosmic superstrings as wound fundamental string states. These will then

interact to form other wound states, but will typically be kinked due to the relative

angle between the initial states (see Figure 1). The most straightforward way to study

these interactions is to construct vertex operators for all states. Consider two long,

straight wound strings on a 2D torus of size L and skew angle θ as illustrated in Figure

2. The momenta are taken to be

p1 =

[(
L

2πα′

)2

− 4

α′

]1/2

(1, 0, 0, 0,0), L1 = L(0, 1, 0, 0,0),

p2 =

[(
L

2πα′

)2

− 4

α′

]1/2

[1− v2]−1/2(1, 0, 0, v,0), L2 = L(0, cos θ, sin θ, 0,0).

These satisfy the conditions such there are no complications involving the branch cuts

of the vertex operators (see section 8.2 of [12]), and also the tachyonic mass-shell
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Figure 2: We model cosmic superstrings as straight wound modes on a large torus,
which will then interact to form a kinked configuration.

conditions

p2
iL = p2

iR =
4

α′
, piL/R = pi ±

Li
2πα′

.

The relevant vertex operators are: (i = 1, 2)

VT (z, z̄; pi) =
κ

2π
√
V

: eipiLXL(z)+ipiRXR(z̄) : (2.1)

where the volume V = V⊥L
2 sin θ is the product of the the transverse volume and the

2D torus (methods to calculate V⊥ can be found in [11]). Now examining the OPE of

these vertex operators (we will only consider the holomorphic side, the antiholomorphic

side is identical):

: eip1LXL(z) :: eip2LXL(0) : = z
α′
2
p1L·p2L : eip1LXL(z)+ip2LXL(0) :

= z
α′
2
p1L·p2L : (1 + izp1L · ∂XL(0) + . . .) ei(p1L+p2L)XL(0) : .

The Taylor expansion of the exponential shows the vertex operators of the infinite

tower of the produced states, which will appear kinked due to their large oscillator

excitation number N :

N − 1 = −α
′

4
(p1L + p2L)2

= −2− α′

2
p1L · p2L

∼ L2/α′.
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Since p1R · p2R = p1L · p2L the result will be identical for the right-moving oscillators

and so Ñ = N . The vertex operators for the possible final states (labeled by index f)

Vkink,f will be the zN coefficient in the expansion of the exponential, each weighted by

a coefficientMf . To extract these we simply take the contour integral in independent

variables ε and ε̄ around the origin:∑
f

MfVkink,f (0; p1 + p2) = CS2

(
κ

2π
√
V

)2
1

(2πi)2

∮
0

dεdε̄ VT (ε, ε̄; p1)VT (0; p2) (2.2)

with CS2 = 32π3V/κ2α′ the normalization for sphere amplitudes. We have normalized

the RHS of (2.2) so that these coefficients Mf are none other than the invariant

amplitude1 to produce that final kinked state,

〈Vkink,f (∞;−pf )VT (1; p1)VT (0; p2)〉 = i(2π)2δ2(p1 + p2 − pf )Mf .

The number of possible final states is then that of a string excited along a single

dimension p1,

D(N) ∼ N−1e2π
√
N/6. (2.3)

Owing to this large degeneracy as N →∞ in the cosmic string limit, it will be impos-

sible to explicitly write down this sum of kinked vertex operators, but there is a simple

statistical distribution. Consider the state corresponding to the sum of these vertex

operators (2.2):

|kinks〉 =
α′

8π

(
κ

2π
√
V

)−1∑
f

Mf |kinkf〉 (2.4)

=
1

(2πi)2

∮
0

dεdε̄ |ε|−2(N+1)e

q
α′
2

P
n≥1 p1L·α−nεn/n+p1R·α̃−nε̄n/n|p1 + p2〉.

The expectation value of the number operator Nn = 1
n
α−nαn in this state is:

〈kinks|Nn|kinks〉
〈kinks|kinks〉

= 2

(
1

n
− 1

N + 1

)
, n ≤ N.

To evaluate the contours we have transformed the outgoing state contour variable ε→
1/ε so that it is also taken around the origin, and then used the standard representation

(1− x)−n =
1

Γ(n)

∫ ∞
0

dt tn−1e−t(1−x).

1Note that since we have compactified 2 of the 4 Minkowski dimensions, all scattering must be
considered 2-dimensional.
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Figure 3: The cosmic superstring reconnection probability is found by summing the
scattering amplitude over all final kinked configurations.

Although this is the spectrum expected for a kinked string, the distribution does not

converge to this mean state when the excitation number grows large, as can be seen

by the relative fluctuation:
〈(Nn − 〈Nn〉)2〉

〈Nn〉2
→ n.

It would be interesting to see whether there is any relation of this state to the kinky

strings studied by McLoughlin et al. [13].

3 Reconnection

3.1 Tree-Level

We can now use the expression (2.2) to calculate the reconnection probability that

two straight strings would scatter into any final kink state, which is the interaction

cross-section as shown in Figure 3:

P =
1

4E1E2v

∫
dpf
2π

1

2Ef

∑
f

|Mf |2(2π)2δ2(p1 + p2 − pf ). (3.5)

To evaluate this we will use the orthonormal relation for two-point correlators on the

sphere (we assume that both Vi(pi) and Vj(pj) are on-shell vertex operators):

〈Vi(∞;−pi)Vj(0; pj)〉 =
8π

α′
(2π)2δ2(pi − pj)δij.
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We also wish to transform the integral over phase space into a more useful form. Recall

that this is the space of all on-shell final states,∑
f

∫
dpf
2π

1

2Ef
=
∑
f

∫
d2pf
(2π)2

2πδ(p2
f −m2

f ).

This delta function represents the change in phase space with respect to the 2-momentum

invariant p2
f , which gives poles at α′

4
m2
f ∼ L2/α′ = −1, 0, 1, 2, . . .. In the large-mass

limit of our cosmic strings we can perform an averaging over these poles,∑
f

δ(p2
f −m2

f )→
α′

4
.

This is same averaging of poles into a branch cut performed in [6] [10] in order to utilize

the optical theorem. The probability can now be easily calculated:∫
dpf
2π

1

2Ef

∑
f

|Mf |2(2π)2δ2(p1 + p2 − pf )

=
α′2

16

∫
d2pf
(2π)2

∫
d2pj
(2π)2

〈
∑
f

M∗
fVkink,f (∞;−pf )

∑
j

MjVkink,j(0; pj)〉(2π)2δ2(p1 + p2 − pf )

=
(CS2α

′)2

16

(
κ

2π
√
V

)4
1

(2πi)4
〈
∮
∞
d2η VT (∞;−p2)VT (η,−p1)

∮
0

d2ε VT (ε, p1)VT (0, p2)〉

=
C3
S2
α′2

16

(
κ

2π
√
V

)8
1

(2πi)4

[∮
0

dηdε (εη)−(N+1)(1− εη)−2

]2

=
8πκ2

α′V
(N + 1)2. (3.6)

Substituting back for N + 1 = −α′

2
p1L · p2L, taking the L→∞ limit, and writing the

answer in terms of the dimensionless coupling gs, the probability of reconnection is

simply

P = g2
s

Vmin

V⊥

(1− cos θ
√

1− v2)2

8 sin θv
√

1− v2
, Vmin = (4π2α′)3. (3.7)

3.2 A Better Way to Do This

Let us now rederive the results in the previous section, using an abbreviated notation

which will be very useful for more complicated interactions.
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Just as we used the contour integral to extract the on-shell part of the : eip1X(z,z̄) : :

eip2X(0) : OPE, the |kinks〉 state will be the part of : eip1X(z,z̄) : |p2〉 that it is annihilated

by both L0 − 1 and L̃0 − 1:

(L0 − 1)|kinks〉 = (L̃0 − 1)|kinks〉 = 0.

A projection operator which accomplishes this can easily be constructed to be

P =
sin π(L0 − 1)

π(L0 − 1)

sin π(L̃0 − 1)

π(L̃0 − 1)

=
1

2π

∫ π

−π
dσL e

iσL(L0−1) 1

2π

∫ π

−π
dσR e

iσR(L̃0−1)

so that

|kinks〉 =

(
κ

2π
√
V

)−1

PVT (1; p1)|p2〉 (3.8)

=

(
κ

2π
√
V

)−1
1

(2π)2

∫ π

−π
dσLdσR VT (eiσL , e−iσR ; p1)|p2〉.

Identifying eiσL → ε, e−iσR → ε̄ then yields the previous expression (2.4). The sum over

final states can now be written as simply∫
dpf
2π

1

2Ef

∑
f

|Mf |2(2π)2δ2(p1 + p2 − pf ) =
32π3

α′
〈p2|VT (−p1)PVT (p1)|p2〉.

We can use merely a single P since like other projection operators P2 = P . It is then

straightforward to see that this yields (3.6). This formalism also allows us to make

contact with the use of the optical theorem [6] [10], written∫
dpf
2π

1

2Ef

∑
f

|Mf |2(2π)2δ2(p1 + p2 − pf ) =

(
8π

α′

)2

Im 〈p2|VT (−p1)∆VT (p1)|p2〉

where ∆ is the closed string propagator with Feynman iε prescription,

∆ =
α′δ(L0 − L̃0)

2(L0 + L̃0 − 2− iε)
.

Let us now trade the (anti)holomorphic operators L0, L̃0 for the worldsheet hamiltonian

H and momentum P operators:

H = L0 + L̃0 − 2,

P = L0 − L̃0.
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Figure 4: The cosmic superstring reconnection process while emitting radiation repre-
sents four diagrams in field theory. Only the first and last are found to be important
in the cosmic string limit.

The propagator can then be written as

Im ∆ =
α′

4i
δ(P )

(
1

H − iε
− 1

H + iε

)
=
πα′

2
δ(P )δ(H)

=
πα′

4
P .

This is then identical to the expression given above.

3.3 Intercommutation with Radiation Emission

The probability for intercommutation should also include the possibility that radiation

could be emitted in the process of reconnection. Such emission has been studied previ-

ously using other techniques [14] [15] but here we show it is a simple generalization of

the same process used to compute ordinary reconnection probabilities. The amplitude

that a single state Vrad(k) will be emitted during the reconnection to kink f is given

by

Arad,f (k) =

∫
d2z 〈Vkink′,f (∞;−p1 − p2 + k)Vrad(z;−k)VT (1; p1)VT (0; p2)〉. (3.9)

This amplitude represents four different field theory processes: the s-, t-, and u-channel

interactions as well as a contact term as shown in Figure 4. Actually, only the first and

last of these contribute. Consider the excitation number of the intermediate states: for
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the s-channel this is the same excitation number as for the kink computed previously,

Ns − 1 = −α
′

4
(p1L + p2L)2

∼ L2/α′

whereas for t- and u- this is

Nt,u − 1 = −α
′

4
(piL − k)2

= −1 +
α′

4
m2

rad +
α′

2
piL · k

∼ −L/
√
α′.

Since we cannot have a negatively excited string, there are no intermediate states in

these channels.

Nonetheless, we consider the expression representing all four channels by writing the

expression for the sum over (perturbed) kink states in terms of the two distinct vertex

operator orderings, where we integrate in w to include the pole over the intermediate

states (rather than contour integrate to simply get the residue):∑
f

Mrad,f (k)Vkink′,f (0; p1 + p2 − k) =

CS2α
′

4π

(
κ

2π
√
V

)2
1

(2πi)2

∮
0

dεdε̄

∫
|w|<1

d2w Vrad(ε;−k)VT (w; p1)VT (0; p2) + (Vrad(−k)↔ VT (p1)),

|kinks′〉 =
8π

α′
P (Vrad(−k)∆VT (p1)|p2〉+ VT (p1)∆Vrad(−k)|p2〉) .

With the new possibility that the radiation could be directed into the x-y plane, there

is the slight complication that we have compactified along these directions so the mo-

mentum must be discrete rather than continuous. As appropriate in the large-L limit,

we approximate the sum over KK modes as an integral over continuous momenta times

the compactification volume,∑
k

→ L2 sin θ

∫
d3k

(2π)2

1

2Ek

.

We also add a 2D sum over pf and momentum-conservation integral, for which the

volume factors cancel,∑
pf ,xy

δ2
k+pf ,xy

→
∫
d2pf,xy
(2π)2

(2π)2δ2(kxy + pf,xy).
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Making these modifications to the reconnection probability given in (3.7), we arrive at

Prad =
L2 sin θ

4E1E2v

∫
d3pf
(2π)3

1

2Ef

d3k

(2π)3

1

2Ek

∑
f

|Mrad,f (k)|2(2π)4δ4(p1+p2−k−pf ). (3.10)

This is evaluated using the same techniques as in the simple reconnection case, aver-

aging the poles of pf (but not k), and multiplying by an additional (2π
√
α′)−2 for the

units introduced by the propagators,∫
d3pf
(2π)3

1

2Ef

∑
f

|Mrad,f (k)|2(2π)4δ4(p1 + p2 − k − pf )

=
8π

α′2
〈p2|VT (−p1)∆Vrad(k)PVrad(−k)∆VT (p1)|p2〉+ perms.

Using the integral representation of the propagator,

∆ =
α′

4π

∫
|z|<1

d2z

|z|2
zL0−1z̄L̃0−1

we can act on the radiation vertex operators in every permutation, since Vrad will always

be adjacent to either |p2〉 or P . For example,

zL0−1Vrad(1)|p2〉 = zL0−1Vrad(1)z−(L0−1)|p2〉

= Vrad(z)|p2〉.

Adding all permutations together (corresponding to different regions of integration for

the radiation), this results in integration over the entire complex plane. We then inter-

pret the reconnection process as a background for the radiation, meaning we neglect

the cross-radiation term2 as well as the effect that the radiation would have on the

projection onto physical states. The resultant sum over final states is then simply

(neglecting phase-space factors)

∑
f

|Mrad,f |2 =
8π

α′2
〈p2|VT (−p1)PVT (p1)|p2〉

∣∣∣∣∫ d2z Vrad[k;Xcl(z, z̄)]

∣∣∣∣2 (3.11)

2Besides the intuition that such cross-radiation terms should be negligible, for more realistic rel-
ativistic radiation we would have α′

2 k2 ≈ 0, and the correlation between radiation vertex operators
disappears.
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where the classical position Xcl is defined as the mean value during the reconnection,

Xcl(z, z̄) =
〈p2|VT (−p1)PX(z, z̄)VT (p1)|p2〉
〈p2|VT (−p1)PVT (p1)|p2〉

= i
∂

∂k

∣∣∣∣
k=0

ln 〈p2|VT (−p1)P : e−ikX(z,z̄) : VT (p1)|p2〉

= i
∂

∂k

∣∣∣∣
k=0

ln

[
z
α′
2
k·p2L(z − 1)

α′
2
k·p1L

∮
0

dε ε−(N+1)(1− ε)−2(1− εz)
α′
2
k·p1L × (L→ R)

]
= −iα

′

2
p2L ln z − iα

′

2
p1L

[
ln(z − 1) +

N∑
n=1

(
1

n
− 1

N + 1

)
zn

]
+ (L→ R). (3.12)

The straight-string vertex operators produce the terms −iα′
2
p2L ln z and −iα′

2
p1L ln(z−

1), which have the expected branch cut on the real axis for z ≤ 0, 1 representing the

windings L2, L1, respectively, as one crosses the cuts. In the large-winding limit we see

there is an additional branch cut produced on this axis for z ≥ 1,

Xcl(z, z̄)→ −iα
′

2
p2L ln z − iα

′

2
p1L ln

(
z − 1

1− z

)
+ (L→ R) as N →∞. (3.13)

As one crosses this at large z, the two branch cuts conspire to replace the gradual

winding on L1 with a step-function.

The probability (3.10) can now be written as the simple probability P0 times a

radiative phase-space factor:

Prad =
L2 sin θ

4E1E2v

8πκ2

α′V
(N + 1)2

(
κ

2π
√
V

)2
α′

(4π)4

∫
d3k

(2π)3

1

2Ek

∣∣∣∣∫ d2z Vrad[k;Xcl(z, z̄)]

∣∣∣∣2
= P0

(
α′g2

sVmin

(4π)4V⊥

)∫
d3k

(2π)3

1

2Ek

∣∣∣∣∫ d2z Vrad[k;Xcl(z, z̄)]

∣∣∣∣2 . (3.14)

This partly illuminates a puzzle discovered in [10], that there is a 1/v divergence in

the fundamental string reconnection probability. Since the integrand in (3.14) univer-

sally contains the exponential of p2zkz ∝ vkz, the integration over kz will result in an

additional factor of 1/v (recall the original 1/v originated from the incoming strings’

kinematic factor). Again taking the cross-radiation effects to be negligible, the result

immediately generalizes to multiple radiative emissions:

Prad,n = P0

(
α′g2

sVmin

(4π)4V⊥

)n n∏
i=1

∫
d3ki
(2π)3

1

2Ek,i

∣∣∣∣∫ d2zi Vrad[ki;Xcl(zi, z̄i)]

∣∣∣∣2 .
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The probability that there are n states radiated during reconnection will have n such

radiated momenta integrals and produce a factor of 1/vn. The tree-level reconnection

probability can then be put in the form

P =
∞∑
n=0

Pn

(
g2
s

v

)n+1

.

This implies that the effective coupling seen by the strings is actually λ ≡ g2
s/v so that

the perturbative, small velocity limit should be defined by g2
s → 0, v → 0 and fixed λ.

Loop corrections to this simply add factors of g2
s which vanish, so in some sense the

strings become classical in this limit.

The resultant integral of the radiation vertex operator over z is then easily evaluated

since as explained in [16] the radiation amplitude drops exponentially with energy

unless there exist double saddle points k · ∂X(z0) = k · ∂̄X(z∗0) = 0 (such as for a

cusp) in which case it is a slower power-law decay or when the (say) holomorphic side

has a saddle point and the antiholomorphic derivative is discontinuous (such as for a

kink), which is what happens in (3.13). The radiation properties of the reconnection

are currently being investigated in more detail [17].

4 Spacetime Picture of String Reconnection

Of course the classical trajectory (3.12) cannot literally be interpreted as the spacetime

path swept out by the superstrings during reconnection, since it is not reparameterization-

invariant: only the amplitude
∫
d2z Vrad[X(z, z̄)] is meaningful. But it can give us some

idea of how string theory sees the reconnection process, both from the worldsheet and

spacetime viewpoints.

In Figure 5 the string worldsheet is shown with the coloring added to illustrate how

these asymptotic string states smoothly reconnect: red, green and blue indicate the

“pure” states at {0, 1,∞}, respectively. Good local coordinates near the straight-string

vertex operators at zi = {0, 1} are eτ+iσ = z − zi, and for the kinked state placed at

infinity we use eτ+iσ = 1/z. In these coordinates σ → σ+2π generates X → X+Li. In

the spacetime embedding of only the straight string vertex operators −iα′
2
p2L ln z and

−iα′
2
p1L ln(z − 1) shown in Figure 6, we see the initial straight wound strings arrive

from t → −∞, then smoothly join into a single kinked string as t → ∞. Although
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Figure 5: The reconnection process from the worldsheet viewpoint. The red, green and
blue colors represent vertex operators at z = {0, 1,∞}, respectively.

tx

y

Figure 6: A qualitative representation of the reconnection process from the spacetime
viewpoint (the z-axis has been projected out).
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the strings appear to break, this is merely the effect of the worldsheet embedding into

spacetime and then slicing it with respect to t.

5 Loop Corrections

We have seen that the probability of reconnection should include not just the proba-

bility of simple reconnection but processes which produce radiation. In fact one should

also include higher-order corrections for each of these (omitting phase-space factors),

P =
1

4E1E2v

∑
f

[
|M(0)

f +M(1)
f + · · · |2 + |M(0)

rad,f +M(1)
rad,f + · · · |2 + · · ·

]
.

The most convenient way to compute the loop effects would be to compute the correc-

tion to the total cross-section:

P =
1

2E1E2v

∑
n≥0

ImM(n)
∣∣
t=0

. (naive) (5.15)

In [10] it was noted that this diverged at higher loops sinceM(n) ∼ L2+2n, but the cause

was suspected to be the incorrect inclusion of amplitudes having multiple final kinked

string states, each state having normalization ∼ L2/α′. The correct approach would

be evaluating (5.15) while excising the intermediate states containing multiple kinked

strings (since these would not correspond to a reconnection!). This could be done by

keeping only the part of each M(n) proportional to L2, corresponding to final states

containing only a single kinked string. Investigation along these lines is underway [18].

6 Radiation

Now let us consider radiation not from reconnection, but simply emitted from a string

state as it evolves. There is now vast literature on gravitational radiation from classical

cosmic strings (see for example [16] [19] [20]). This is computed by Fourier transforming

the functional derivative of the string action,

T µν(k) =

∫
dDx e−ikx

δ

δgµν

1

2πα′

∫
d2z gµν∂X

µ∂̄XνδD(X(z, z̄)− x)

=
1

2πα′

∫
d2z ∂Xµ∂̄Xνe−ikX . (6.16)
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Note that this can be interpreted as a graviton vertex operator integrated over the

worldsheet. As explained previously, this is largest when both k ·XL(z) and k ·XR(z̄)

develop saddle points (such as in a cusp), or when one does and the other develops

a discontinuity (such as in a kink). By substituting in a suitable solution for X(z, z̄)

around this point one can calculate the radiation emitted.

We would now hope to calculate the same quantity for cosmic superstrings from

first principles; that is, use vertex operators to represent the radiation (not necessarily

gravitational) as well as for the cosmic string states themselves. For the radiation

emitted from a cosmic string of vertex operator Vcs(p), the amplitude is

Arad,f (k) = 〈Vcs′,f (∞;−p+ k)Vrad(1;−k)Vcs(0; p)〉.

However, it would be much easier to compare to the classical answer if we could use

an effective string action, at least for the massless radiation:

Seff =
1

2πα′

∫
d2z
[
gµν(X)∂Xµ∂̄Xν +O(α′)

]
where this is defined as performing the path integral over quantum fluctuations in a

classical background,

e−Seff [Xcl] =

∫
[DX ′]|X=Xcl+X′

[Dh]e−S[X,h].

Evaluating this path integral is actually trivial because we know there should be no

corrections to the classical action, string theory being defined by the condition that

the worldsheet beta functionals are all zero! Thus the classical source (6.16) is correct

even for quantum superstrings (modulo the addition of fermions). There will still be

differences in the actual signal measured by a gravitational wave detector since the

graviton must propagate according to the α′-corrected General Relativity of string

theory, but the source term will be the same. Recently the small-scale structure which

underlies this radiation emission has recently been studied in [21] [22] [23].

In order to ensure the beta functions are indeed zero it is necessary to represent the

cosmic superstring as a physical string state (that is, satisfies the Virasoro constraints).

This is a different approach taken from [24] who model the cosmic superstring as a semi-

classical coherent state. This then produces very small corrections in the source term,

though still too small to be observed.
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For massive radiated states it is completely straightforward to compute the emission

decay rate using the same technique as that used for the reconnection probability, where

the sum over amplitudes and final states can be computed from the distribution∑
f

Mrad,f (k)Vcs′,f (0; p− k) = CS2

(
κ

2π
√
V

)2
1

(2πi)2

∮
0

dεdε̄ Vrad(ε, ε̄;−k)Vcs(0; p).

Of course the total decay rate must equal that given by the imaginary part of the

one-loop mass correction,

Γ =
1

m
Im 〈Vcs(−p)Vcs(p)〉T 2 .

This is the approach used to calculate the decay rate for highly excited cosmic string

‘loops’ which have broken off of large winding modes [25] [26].

7 Boundary Functionals and (p, q) Strings

The methods we have developed here work exclusively for fundamental cosmic su-

perstrings. It would be theoretically and practically convenient to generalize this to

D-strings [27] and (p, q)-strings [28]. The interactions of these have been studied using

either a string worldsheet with boundary conditions or as field theories living on the

D-string worldvolume [10] [29] [30].

One might try to formulate such a general approach for string interactions by defin-

ing boundary functionals to represent the fundamental strings; that is, states defined on

the unit circle which are a function of the coordinate modes Xn = 1
2π

∫ 2π

0
X(σ)e−inσdσ.

For the straight strings (formerly represented as wound tachyon vertex operators) these

states |W 〉 are simply gaussian distributions reflecting the fact that they are unexcited

ground states,

〈Xn|W 〉 ∝ e−
n
α′XnX−n .

For the kinked fundamental string states defined in (2.4) the answer is more interesting.

We attempt to construct such a state |K〉 by factoring the kink state as

|kinks〉 = ∆|K〉 (7.17)

where ∆ is the closed string propagator. To accomplish this, let us reexamine the

earlier process used to construct the kink states in terms of a projection operator of H
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and P . Re-writing (3.8) in terms of these operators, we get an expression which can

be factorized into the desired form of (7.17):

|kinks〉 =
sin πP

πP

sin(πH/2)

πH/2
VT (1; p1)|p2〉

= ∆
sin(πH/2)

α′π/2
VT (1; p1)|p2〉.

Thus we identify our boundary functional as

|K〉 =
4

πα′
sin

πH

2
VT (1; p1)|p2〉. (7.18)

Such a sinπH/2 factor should be familiar from amplitudes which factor closed string

amplitudes into (anti)holomorphic components. To write this in a more useful form,

represent the operator as the difference of exponentials

sin
πH

2
=

1

2i

(
eiπH/2 − e−iπH/2

)
.

This can now easily act on VT (1; p1)|p2〉 to produce

|K〉 = |+〉 − |−〉

where we have defined the coherent states

|±〉 ≡ 2

πα′i
: eip1LXL(i)+ip1RXR(i) : |p2〉

=
2(±i)α

′
2

(p1L·p2L+p1R·p2R)

πα′i
e

q
α′
2

P
n≥1 p1L·α−n(±i)n/n+p1R·α̃−n(±i)n/n|p1 + p2〉,

〈Xn|±〉 ∝ exp
[
− n
α′

(Xn − iα′p1R(±i)n/n) (X−n − iα′p1L(±i)n/n)
]
.

Though there are an infinite number of oscillator excitations the propagator ∆ will

project only onto the on-shell portion of this. Thus the state can be thought of heuris-

tically as VT (p2) at the origin and VT (p1) placed at ±i, though it is not a usual vertex

operator V (z, z̄) in the sense that z̄ is not the complex conjugate of z.

Even though we have defined these states |W 〉 and |K〉 on the unit circle in an

attempt to make them similar to D-branes, they are not boundary states in that they

do not define boundary conditions: there is “charge” (in the form of the vertex operator

VT (p1)) located on the boundary so it is impossible to fix boundary conditions there.

It would be interesting to see whether this novel representation of the kink can be used

for more efficient computation of the interactions.
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8 Discussion and Conclusion

It is now possible to calculate the interaction and radiation for cosmic superstrings as

well as their classical counterparts. This is particularly exciting due to the increasing

sensitivity of experiments to cosmic string radiation, stochastic as well as directed

bursts. Bounds on these currently exist from various sources such as LIGO S4, pulsar

timing, big bang nucleosynthesis, and the cosmic microwave background, with potential

further bounds from advanced LIGO and LISA [31] [32] [33] [34]. These bounds are

very dependent upon parameters such as the dimensionless string tension parameter

Gµ, probability of reconnection P , loop size parameter ε and radiative parameter α [20].

With the tools developed in this article one can begin to study the phenomenology of

models based on superstring parameters α′ and gs, plus specifics of compactification

[11]. If even a single cosmic string is found, one can get an observational estimate of

P (θ, v) from examining the kinks on the string as it has reconnected during its lifetime.

A low P ∼ g2
s suggests a fundamental cosmic superstring such as those studied here,

whereas a higher P ∼ 1 suggests a classical vortex cosmic string or (p, q)-string. The

angle- and velocity-dependent reconnection probability can easily be incorporated into

a simulation or analytic study [21] to study the abundance of cosmic strings present

today. It might also be relevant to string-gas studies since winding string interaction

rates could influence the decompactification rate of the universe [35].
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